

Performance and Metrics Analysis Between

Python3 v/s Mojo

Anuj Kumar Aditya Deo

Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

anujk866942@gmail.com

Swayam Gupta
Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

swayamgupta5698@gmail.com

Roumo Kundu
Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

rjroumo@gmail.com

Piyush Jaiswal
Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

piyushjaiswal2203@gmail.com

Taha Fatma

Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

tahafatma3535@gmail.com

Mohan Kumar Dehury

Amity Institute of Information

Technology

Amity University Jharkhand

Ranchi, India

mohankdehury@gmail.com

Abstract — In the field of programming languages, Mojo and

Python have gained significant popularity and recognition among

developers. While Mojo, a newly emerging language, and Python,

a well-established language, both have their own merits and

features that make them suitable for various programming tasks.

Recent AI techniques such as transformers in Natural Language

Processing (NLP), Reinforcement Learning (RL), and Generative

Adversarial Networks (GANs) have shown remarkable

advancements. However, these techniques face challenges like

high computational costs, scalability issues, and integration

complexity. While Python features user-friendly syntax and

extensive libraries, its interpreted nature can hinder performance

for computationally intensive tasks. This research addresses this

limitation by introducing Mojo, a high-performance language

specifically designed for AI applications. Mojo leverages

compilation and advanced optimization techniques to achieve

significantly faster execution speeds compared to Python. The

Mojo programming language can address these challenges by

offering high-performance computation, efficient memory

management, and seamless integration with AI frameworks. This

can lead to faster processing times, better scalability, and more

streamlined development workflows for advanced AI systems.

The paper presents empirical evidence demonstrating the

substantial performance gains offered by Mojo. Furthermore, the

analysis explores several advantages of Mojo beyond raw speed.

These include static typing, which enhances code reliability and

maintainability, and built-in support for parallelism, enabling

efficient utilization of multi-core processors. Additionally, Mojo's

seamless integration with existing Python codebases allows

developers to leverage the extensive Python ecosystem while

enjoying the performance benefits of Mojo.

Keywords — Mojo, Python, Programming Languages,

Performance, AI Applications, Machine Learning, Static Typing,

Memory Safety, Multithreading

I. INTRODUCTION

Artificial Intelligence (AI) is the simulation of human

intelligence processes by machines, particularly computer

systems. It is important in the current world because it

enhances efficiency, drives innovation, and enables solutions

to complex problems across various sectors, including

healthcare, finance, and transportation. As depicted in Fig 1.

This growth is demonstrated globally, with a surge of interest

evident across numerous countries [1, 50]. This widespread

adoption is further illustrated by Fig 2, which depicts a clear

upward trend in the use of the term “AI” over time [29]. Python,

with its readily readable syntax and extensive ecosystem of

libraries like TensorFlow and PyTorch, has become the de

facto language for implementing AI and machine learning (ML)

models [45, 56]. However, Python's interpreted nature often

leads to performance bottlenecks, hindering the efficiency of

complex AI applications. This is particularly true for

computationally intensive tasks such as deep learning and

large-scale data processing [28]. Additionally, Python lacks

features crucial for robust software development, such as static

typing and strong memory management [34]. To address these

limitations, a new language specifically designed for high-

performance AI development has emerged: Mojo [26].

Fig 1. Popularity of AI Across Countries

Fig 2. Search Volume For Term AI Over The Years

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1291

20
24

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

us
ta

in
ab

le
 C

om
pu

tin
g

an
d

Sm
ar

t S
ys

te
m

s (
IC

SC
SS

) |
 9

79
-8

-3
50

3-
79

99
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SC

SS
60

66
0.

20
24

.1
06

25
34

2

Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

Developed by Chris Lattner, the creator of the popular

programming language Swift, Mojo offers a compelling

alternative to Python for AI and ML projects [33]. Unlike

Python, The Mojo Programming Language, designed for high-

performance AI and data science applications, can

revolutionize the AI landscape by enabling faster computation,

more efficient data handling, and seamless integration with

existing AI frameworks, thus accelerating AI development and

deployment. Moreover, Mojo boasts several features that

enhance the development experience for AI applications.

Static typing ensures type safety, preventing runtime errors

often encountered in dynamically typed languages like Python

[24]. This leads to more robust and maintainable code.

Additionally, Mojo offers strong memory management,

mitigating the risk of memory leaks and crashes that can

plague Python programs [32]. Finally, Mojo supports

multithreading, enabling developers to leverage multiple cores

or processors for parallelized execution, further boosting

performance for computationally intensive tasks [48]. The

motive and objective laid down by the amalgamation of the

work is to facilitate and validate the features and plethora of

the new “ Gen-Z ” Language Mojo in terms of building “AI

and ML Models Faster” with better efficiency.

II. LITERATURE REVIEW

Python and C++, two well-known programming languages, are

compared in this essay. Operating systems employ C++, a low-

level object-oriented language, in contrast to Python, which is

a high-level object-oriented language. Memory management

strategies, program execution speed, execution time, and

memory used by several algorithms in both languages are all

analyzed. Data suggests that C++ is faster at execution, but

because it's easier to use, Python is a better choice for novices.

The study also examines how much time is spent on each

language. Although Python interpreters need some time to

convert human-readable code into bytecode and machine code,

C++ is a statically typed compiled language. Python uses

dynamic typing, which quickly resolves type conversion

problems that arise during runtime. The sorting, searching,

insertion, and deletion algorithms on an array data structure

formed the foundation for a comparison between the two

languages. The results of the investigation showed that in

terms of memory and performance, Python is inferior to C++.

Nonetheless, C++ is a better option for bigger projects, while

Python is a fantastic tool for beginners and those looking to

code quickly. In conclusion, each of Python and C++ has

benefits of its own. Python is a better choice for beginners than

C++ because of its ease of use, readability, portability, and

scalability. C++ is a difficult language to master [10].

The polyhedral loop nest optimizer for the LLVM project,

Polly, has suggested user-directed pragmas for loop

modification. An MC tree search (MCTS) search method is

built to determine the optimal loop optimization strategy. The

technique is divided into two stages: first, it goes deep to

exploit the loop transformations on the various tree levels, and

then it solves the problem by local search process [2,3,4]. In a

local solution, a restart mechanism keeps the MCTS from

becoming blocked. Experimental results manifest that the

MCTS (Monte-Carlo Tree Search) algorithm finds pragma

combinations with a speedup of 2.3x over Polly's heuristic

optimizations. To correctly find high-performing loop

transformation combinations, an autotuning framework was

created. This suggested MCTS outperforms 16 PolyBench

kernels and three ECP proxy apps' heuristic optimization of

Polly. In addition, we want to include the remaining loop

transformation that Polly can utilize and reduce the search

space by removing transformations that are not viable and

identical configurations [11].

The studies that have been described so far have focused on

identifying the most painful and descriptive aspects of

languages like Java, C, C++, C, Rust, and JavaScript. This

effort is distinctive enough to compare the new Language

Mojo's design, features, and performance against Python.

III. PYTHON ARCHITECTURE

Since the late 1980s, Guido Van Rossum has been developing

Python, a high-level programming language [44]. It was

created to take the position of the ABC programming language,

which was compatible with the Amoeba OS [38]. Version 1.0

of Python was initially made available in 1994. Versions 2.0

and 3.0 were then published in 2000 and 2008, respectively.

The Python interpreter, called CPython, is written in the C

programming language and works behind the scenes [16].

Fig 3. Python's Interpreter Working Mechanism Architecture

Architectural Breakdown

The CPython implementation shown in Fig 3, the most widely

used, employs a multi-stage compiler architecture. Here's a

breakdown of its key components:

• Tokenizer: The source code is broken down into basic

components known as tokens in this first step. Tokens

such as def, if, operators (+, -), identifiers like

variable names, and delimiters like brackets and

commas are represented by these tokens [54].

• Parser: The parser takes the token stream and

constructs an Abstract Syntax Tree (AST). The AST

serves as a hierarchical representation of the

program's structure, capturing the relationships

between code elements [30].

• Bytecode Generation: Traversing the AST, this stage

translates it into bytecode, a low-level instruction set

specifically designed for the Python Virtual Machine

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1292
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

(PVM). Each bytecode instruction corresponds to an

operation the PVM can execute [52].

Java Bytecode Vs Python Bytecode

Java and Python are programming languages that use a

bytecode as an intermediate representation for their programs

[31]. There are several differences between Java bytecode and

Python bytecode:

Platform Independence: Java bytecode is platform-

independent, allowing it to run seamlessly on various

platforms as long as a compatible JVM is present. On the other

hand, Python bytecode lacks inherent platform independence,

and its execution relies on the Python Virtual Machine (PVM),

which is not a platform-independent abstraction layer [36].

Optimization Potential: Java bytecode offers greater

optimization potential due to its Just-In-Time (JIT) compiler,

which dynamically translates frequently executed bytecode

sections into machine code during runtime. However, Python

bytecode has less extensive optimization opportunities and is

generally considered faster [49].

Development Workflow: Java Bytecode involves a two-stage

compilation process, requiring stricter type checking, while

Python Bytecode generates bytecode at runtime, offering a

streamlined development workflow but potentially causing

errors [27].

Optimization: Certain Python implementations incorporate

optimization passes at this stage. These passes may analyze the

bytecode to identify redundancies or inefficiencies, potentially

improving the code’s performance [27].

Bytecode Emission: Finally, the optimized bytecode is written

to a .pyc file. This file serves as an intermediate representation

and can be reused for subsequent executions, provided the

source code hasn’t changed [43].

IV. MOJO ARCHITECTURE

Mojo (mojo_test.) , a multi-paradigm programming

language, was created by Chris Lattner to bridge the gap

between the research and production stages of AI development

in May 2023 [46]. It offers syntax familiarity, unparalleled

performance, Python interoperability, parallel processing, and

model extensibility [47]. Mojo borrows heavily from Python's

syntax, providing a smoother transition from research to

production. It leverages the MLIR compiler infrastructure,

allowing for the translation of Mojo code into highly optimized

machine code. Mojo also allows for Python interoperability,

enabling developers to leverage existing Python libraries

within their code. Furthermore, Mojo allows for the

modification and extension of existing AI models, providing a

powerful tool for advanced AI development. Mojo uses the

LLVM compiler infrastructure project for exceptional

performance but instead uses MLIR (Multi-Level Intermediate

Representation) as a bridge between Mojo's source code and

the LLVM toolchain. MLIR offers language independence,

rich optimization opportunities, and extensibility, allowing for

efficient machine code tailored to specific hardware and

domain-specific optimizations relevant to AI applications,

enabling further performance enhancements. The next section

discusses LLVM and MLIR models in detail.

LLVM

A key characteristic of LLVM is the LLVM Intermediate

Representation (IR), a description of the code within the

compiler. What is called an optimizer in a compiler is designed

to be big enough to have mid-level analysis and

transformations. These analyses and transformations will work

under the optimizer. Along with its class oil, LLVM IR is said

to provide the most aggressive restructure transformation,

cross-function and/or interprocedural optimization, full

program analysis, and runtime optimizations. Bases of the

virtual instruction set such as addition, subtraction,

comparison, and branch will perform adding sequentially as in

low-level RISC processors. LLVM is tightly typed, hides

architectural details under the hood, and is based on a

simplified type system. Unlike many others, it has a very

modular structure. Three isomorphic forms of LLVM IR are

defined: Instead of the textual format, an in-memory data

structure that may be examined and edited through

optimization can be applied. Moreover, the bitcode format,

which is much smaller and denser, is incorporated for the disc

storage [6].

 The on-disk format can be changed from text to binary using

tools from the LLVM Project. Because it is intended to be both

expressive enough to provide significant optimizations for

actual targets and simple enough for a front end to create, an

intermediate representation of a compiler can serve as the

optimizer's "perfect world". A front end is used by an LLVM-

based compiler to read, verify, and identify mistakes in input

code before translating it into LLVM IR. After going through

analysis and optimization stages to make the code better, this

IR is fed into a code generator to create native machine code.

LLVM IR is the sole well-defined interface to the optimizer

and the source of power and flexibility for the LLVM

architecture [7]. The three-phase architecture model is shown

in figure 4. Its success in many applications can be attributed

in large part to this feature. This feature is absent from the GCC

compiler, though, because its GIMPLE mid-level

representation is not self-contained. To create a GCC front

end, front-end authors must thus be familiar with GIMPLE and

the tree data structures of GCC. Furthermore, GCC is hard to

experiment with since it doesn't allow you to dump out

"everything representing my code" or read and write GIMPLE

in text form. Instead of being a single command line compiler

or opaque virtual machine, LLVM is an architecture built as a

set of libraries. It is a framework that may be applied to specific

tasks, such as developing a C compiler or refining an optimizer

within a pipeline for special effects [41]. The optimizer

receives LLVM IR, processes it for a while, and then outputs

LLVM IR, which should result in speedier execution. The

optimizer is set up as a series of discrete optimization runs,

each of which is executed on the input and allowed to act.

Expression reassociation, loop invariant code mobility, and the

inliner are common instances of passes [42]. An indirect

descendant of the Pass class, each LLVM pass is expressed as

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1293
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

a C++ class. A single.cpp file contains the majority of passes,

and an anonymous namespace defines their subclass of the

Pass class. Numerous passes are available from the LLVM

optimizer, and each one is compiled into one or more files that

are then assembled into a collection of archive libraries (.a files

on Unix systems). Because of the loose coupling between the

passes, these libraries offer a variety of analysis and

transformation capabilities. The implementation may select

which passes are appropriate for the image processing domain

as well as the sequence in which they run thanks to LLVM's

library-based design [40, 55]. This uncomplicated design

strategy enables LLVM to offer a great deal of functionality

without penalizing library customers who only wish to do

basic tasks. To generate the best code feasible for each target,

the LLVM code generator converts LLVM IR into target-

specific machine code. Instruction selection, register

allocation, scheduling, code layout optimization, and assembly

emission are some of the distinct stages that it divides the code

generation problem into. The target author has the option to

apply custom passes that are unique to their needs or select

from these predefined passes. Target authors may develop

excellent code thanks to this flexibility since it eliminates the

need to completely create a code generator for their target.

Fig 4. Comprehensive LLVM's Three-Phase Architecture

Model

MLIR

Building reusable and extendable compiler infrastructure is

being tackled in a new way with the MLIR project [39]. It

attempts to alleviate the fragmentation of software, enhance

compilation for heterogeneous hardware, lower the cost of

developing domain-specific compilers, and provide

interoperability amongst current compilers. The

comprehensive model is shown in figure 5. Target-specific

operations, polyhedral primitives, dataflow graphs,

optimizations, loop optimizations, code generation "lowering"

transformations, and hardware synthesis tools are just a few of

the needs that MLIR, a hybrid IR, covers in a single

infrastructure [5]. Despite being a sophisticated representation,

MLIR does not enable source language writing for end users

or low-level machine code-generating methods. Current best

practices, such as creating and maintaining an IR standard,

creating an IR verifier, and creating modular libraries, are

encouraged by the MLIR framework. Additional modules,

including restricting the scope of SSA to minimize use-def

chains and substituting explicit symbol references for cross-

function references, have been integrated into the design [40].

Fig 5. Comprehensive MLIR's Modular Phase Architecture

Model as an Extension to the LLVM Model

V. PERFORMANCE ANALYSIS

As termed by the documentation of Modular and Mojo, which

states that it supports high-performance speed. To prove

justification for that statement comparative testing was done.

The three most famous data structure-based algorithms were

used for the performance analysis. Namely Linear Search,

Insertion Sort, and Bubble Sort. Recursion-based algorithms

were not tested as Python has a fixed maximum recursion

depth. This means there's a limit of 1000 to how many times a

function can call itself recursively before an error occurs [23].

To avoid reaching the maximum recursion depth in Python, it

is important to optimize recursive functions and make sure

they have a base case that terminates the recursion [22]. By

optimizing recursive functions and ensuring a base case, you

can prevent the program from reaching the maximum

recursion depth in Python. Additionally, it is possible to

customize the recursion depth limit in Python using the sys

module.

The architectures considered for the task are Google Colab (a),

Windows 10 (b), and Modular Playground (c) described in

Table 1.

TABLE 1. TESTING PLATFORM'S ARCHITECTURE

SPECIFICATIONS

a

CPU Model: x86_64

Operating System: Linux-6.1.58+-x86_64-with-

glibc2.35

Physical Cores: 1

Logical Cores: 2

RAM: 12.67 GB

Architecture: 64bit

b

CPU Model: AMD64 Family 23 Model 113

Stepping 0, AuthenticAMD

Operating System: Windows-10-10.0.19045-SP0

Physical Cores: 6

Logical Cores: 12

RAM: 15.93 GB

Architecture: 64bit

c

OS : linux

CPU : cascadelake

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1294
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

Arch : x86_64-unknown-linux-gnu

Physical Cores : 4

Logical Cores : 8

CPU Features : sse4 avx avx2 avx512f avx512_vnni

The information on the Modular Playground has been obtained

from the official documentation which states “ With 3rd

Generation Intel Xeon Scalable processors powering them,

Amazon EC2 C6i instances offer up to 15% better pricing

performance than C5 instances for a variety of applications.

With a RAM-to-virtual CPU ratio of 2:1, they support up to

128 virtual instances per instance, which is an increase of 33%

when compared to C5 instances. Examples of these instances

include video encoding, ad serving, high-speed computing,

distributed analytics, batch processing, and multiplayer

gaming that require high computing power. Besides being

ideal for low-latency, high-speed applications, they also

feature local NVMe-based SSD block-level storage. In terms

of cost per TB, the C6id instances are 56% cheaper than C5d

instances and would have up to 138% more storage capacity

per virtual CPU. The C6in versions provide for two times the

packet performance of the C5n instances and up to 200 Gbps

of network capacity. Besides, they can deliver 400K I/O

operations per second (IOPS) and up to 100 Gbps of Amazon

Elastic Block Store (EBS) performance which is perfect for

applications with a huge network demand.” [21]

The RAM specifications for Amazon EC2 C6i instances, with

the text provided, about the RAM specifications for Amazon

EC2 C6i instances:

• C6i instances feature a 2:1 vCPU to Memory ratio, as

is the case for C5 instances.

• They may be running up to 128 virtual CPUs, which

is an increment of 33% in comparison to C5

instances.

Based on this information, we can deduce that the RAM

specifications for C6i instances depend on the number of

vCPUs allocated - Based on this information, we can deduce

that the RAM specifications for C6i instances depend on the

number of vCPUs allocated:

• The 2:1 vCPU to M implies that for every two

vCPUs, there is an M of memory. The calculating

ratio is the same as that of C5 machines.

• Upto 128 vCPUs of processing capability is

supported by C6i instances, the translation is that the

memory is also up to 64 units (128 vCPU ÷ 2 memory

units per vCPU = the value of A).

Though the text does not show the exact value of RAM per

vCPU or instance in GB or TB, the given text shows the

number of vCPUs or seeds that can use the same resources. It

is the RAM allocation that will correspond with the instance

type chosen from among the C6i family and with a specific

configuration during the instance creation.

OS The performance of Programming languages varies with

different variations of Operating Systems. Some operating

systems are more optimized for certain programming

languages, leading to better performance and efficiency [20].

The snippets of the algos and implementation of the codes of

MOJO in the playground have been described here as follows.

Fig 6. Snippet for Building List in Mojo for Testing

Fig 7. Insertion Sort Algorithm Implementation in Mojo

Fig 8. Bubble Sort Algorithm Implementation in Mojo

Fig 9. Linear Search Algorithm Implementation in Mojo

As described in the code snippets in figures 6 to 9, the List

Creation has been done with the data points of 10,0000 points

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1295
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

the test analysis has been the creation of random 10,000 data

points then implementing the algorithm as a whole.

Table 2. Performance Results Comparison of Different

Algorithms with MOJO v/s Python3

Algo Colab Windows PlayGround

Bubble Sort 17.0 mins 10.45 mins 2.2613 secs

Insertion

Sort

7.50 mins 4.49 mins 21.010 secs

Linear

Search

0.0118040

ms

0.0150 ms 0.8004 secs

The performance metrics displayed in Table 2 for each

algorithm in all the environments give a wide range of

execution times. Bubble Sort O(n2) [17], one of the basic

algorithms for sorting, runs more quickly in PlayGround

compared to Colab and Windows, possibly due to different

resource allocation and optimization approaches. Besides the

Insertion Sort O(n2) [18], an elementary sorting technique,

illustrates that Windows and PlayGround are faster than Colab

in terms of execution time as well. Compared to this, Linear

Search O(n) [19], a very simple search algorithm operates very

fast in Colab and Windows but is a little slower in PlayGround.

Thus, the variations demonstrate the influence of system

resources, optimization strategies, and environmental

configurations on algorithms efficiency pointing out that these

factors should be taken into consideration when comparing

algorithms in various contexts.

VI. CONCLUSION

Finally, the study focused on the programming language

landscape as a part of AI and machine learning exploration

with a comparative analysis of Mojo and Python. AI

development has adopted Python as a staple, due to its clear

and high-level syntax as well as a wide range of libraries;

however, some performance limitations, if applied to difficult

calculating tasks, are evident. The characteristics of Mojo,

which is designed for AI applications and involves features

like compilation, static typing, memory safety, and built-in

support for parallelism, have proven to be limitless. The study

underlines the fundamental divergencies between Python and

C++ concerning the storage taking in mind and the speed of

work as well as highlighting the ease of use of Python for

beginners and C++ for larger projects. It also touches on the

architecture of Python which involves a multi-stage compiler

and bytecode generation. In comparison, Mojo has an

architecture that communicates with the MLIR compiler

infrastructure for compiled machine code. The performance

analysis piece tests the performance of algorithms against

different platform environments, illustrating the implications

that system resources, optimization strategies, and

environment configurations have on the efficiency of a given

algorithm. The outcomes emphasize the need for such areas to

be factored in when selecting programming languages for

particular projects. Overall, the research provides its context to

the ongoing discussion of the listing of programming

languages for AI development, which underlines their benefits

and drawbacks and discovers Mojo as a groundbreaking

supporter of performance in terms of fluency and compatibility

with the existing Python codebase.

ACKNOWLEDGMENTS

This is to acknowledge the production and publication of the

manuscript under the mandate of “Innovate Xplore” the

Research and Development Club of “Amity Institute of

Information and Technology (AIIT)” at “Amity University

Jharkhand (AUJ)” in the year 2024 odd Semester.

REFERENCES

[1] "Google
Trends".https://trends.google.com/trends/explore?date=all&q=%2Fm%
2F0mkz&hl=en

[2] "docs.modular".https://docs.modular.com/mojo/why-mojo#why-we-
chose-python

[3] "python-problems".https://docs.modular.com/mojo/why-mojo#pythons-
problems

[4] "python-supersets-with-c-
compatibility".https://docs.modular.com/mojo/why-mojo#python-
supersets-with-c-compatibility

[5] "why-mojo#mlir".https://docs.modular.com/mojo/why-mojo#mlir

[6] "aosabook".https://aosabook.org/en/v1/llvm.html

[7] "MLIR".https://mlir.llvm.org/

[8] "mojo-speed-over-python".https://www.modular.com/blog/how-mojo-
gets-a-35-000x-speedup-over-python-part-1

[9] "Matrix multiplication with
Mojo".https://docs.modular.com/mojo/notebooks/Matmul

[10] Zehra, Farzeen & Javed, Maha & Khan, Darakhshan & Pasha, Maria.
(2020). Comparative Analysis of C++ and Python in Terms of Memory
and Time. 10.20944/preprints202012.0516.v1.

[11] J. Koo, P. Balaprakash, M. Kruse, X. Wu, P. Hovland and M. Hall,
"Customized Monte Carlo Tree Search for LLVM/Polly's Composable
Loop Optimization Transformations," 2021 International Workshop on
Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), St. Louis, MO, USA, 2021,
pp. 82-93, doi: 10.1109/PMBS54543.2021.00015.

[12] Antonios Tsigkanos , “A virtual machine and runtime framework
targeting Heterogeneous embedded systems”

[13] Elias Athanasopoulos,” Lecture 18 Low Level Virtual Machine
(LLVM)”

[14] S. P. Bejo, B. Kumar, P. Banerjee, P. Jha, A. N. Singh and M. K. Dehury,
"Design, Analysis and Implementation of an Advanced Keylogger to
Defend Cyber Threats," 2023 9th International Conference on Advanced
Computing and Communication Systems (ICACCS), Coimbatore, India,
2023, pp. 2269-2274, doi: 10.1109/ICACCS57279.2023.10112977.

[15] Al Sukhni, B. Kumar Mohanta, M. Kumar Dehury and A. Kumar
Tripathy, "A Novel Approach for Detecting and Preventing Security
attacks using Machine Learning in IoT," 2023 14th International
Conference on Computing Communication and Networking
Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi:
10.1109/ICCCNT56998.2023.10307883..

[16] Eberl, S. (2010, June). DGNB vs. LEED: A comparative analysis. In
Conference on Central Europe towards Sustainable Building (pp. 1-5).

[17] Hsu, A. (2022, February 22). Comparison of Selection Sort, Insertion
Sort and Bubble Sort. https://medium.com/coder-life/comparison-of-
selection-sort-insertion-sort-and-bubble-sort-7dc1d971a136

[18] Insertion sort. (2023, January 23).
https://www.wikiwand.com/en/Insertion_sort

[19] Linear search. (2001, September 27).
https://en.wikipedia.org/wiki/Linear_search

[20] Bukie, P., Udeze, C., Obono, I., & Edim, E. (2019). Comparative
Analysis of Compiler Performances and Program Efficiency. .
https://doi.org/10.20944/preprints201909.0322.v1.

[21] “Amazon EC2 C6i Instances”. https://aws.amazon.com/ec2/instance-
types/c6i/

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1296
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

[22] Rajnis. (2019, August 5). sys.setrecursionlimit() method.
https://www.geeksforgeeks.org/python-sys-setrecursionlimit-method

[23] What Is the Maximum Recursion Depth in Python. (2021, October 7).
https://www.codingem.com/python-maximum-recursion-depth

[24] N. (2023, November 7). Mojo - A New Programming Language for AI
- DEV Community. https://dev.to/refine/mojo-a-new-programming-
language-for-ai-16n5

[25] N. (2023, November 7). Mojo - A New Programming Language for AI.
https://dev.to/refine/mojo-a-new-programming-language-for-ai-16n5

[26] u00d6zmen, N. (2023, November 7). Mojo - A New Programming
Language for AI. https://dev.to/refine/mojo-a-new-programming-
language-for-ai-16n5

[27] Bennett, J. (2018, April 23). An introduction to Python bytecode.
https://opensource.com/article/18/4/introduction-python-bytecode

[28] Byun, C., Arcand, W., Bestor, D., Bergeron, B., Gadepally, V., Houle,
M., Hubbell, M., Hayden, J., Klein, J., Michaleas, A., Milechin, P.,
Morales, L., Mullen, G., Prout, J., Reuther, A., Rosa, A., Samsi, A., Yee,
S., Kepner, C., & Jeremy, J. (2023, September 7). Python Performance
Study. https://arxiv.org/abs/2309.03931

[29] Concepcion, R., Bedruz, R., Culaba, A., Dadios, E., & Pascua, A. (2019,
November 1). The Technology Adoption and Governance of Artificial
Intelligence in the Philippines.
https://doi.org/10.1109/hnicem48295.2019.9072725

[30] Decompilation at Runtime and the Design of a Decompiler for Dynamic
Interpreted Languages. (n.d). https://rocky.github.io/Deparsing-
Paper.pdf

[31] Edge, J. (2013, April 3). PyCon: Peering in on bytecodes.
https://lwn.net/Articles/544787/

[32] Fulton, N., Omar, C., & Aldrich, J. (2014, January 1). Statically typed
string sanitation inside a python.
https://doi.org/10.1145/2687148.2687152

[33] Gallagher, W. (2023, October 19). Swift creator brings new AI
programming language to the Mac.
https://appleinsider.com/articles/23/10/19/swift-creator-brings-new-ai-
programming-language-to-the-mac?utm_medium=rss

[34] Geller, A. (2021, January 9). Is Python Really a Bottleneck?.
https://towardsdatascience.com/is-python-really-a-bottleneck-
786d063e2921?gi=5df1662aa2d5

[35] Hajkowicz, S., Sanderson, C., Karimi, S., Bratanova, A., & Naughtin, C.
(2023, August 1). Artificial intelligence adoption in the physical
sciences, natural sciences, life sciences, social sciences and the arts and
humanities: A bibliometric analysis of research publications from 1960-
2021. https://doi.org/10.1016/j.techsoc.2023.102260

[36] History of Python. (2009, February 1).
https://en.wikipedia.org/wiki/History_of_Python

[37] Introduction to Mojo Programming Language. (2023, July 19).
https://www.infoq.com/news/2023/07/mojo-programming-language/

[38] Ivanovs, A. (2023, October 14). The history of Python, the most popular
programming language. https://stackdiary.com/the-history-of-python/

[39] Lattner, C., & Adve, V. (2005, January 1). The LLVM Compiler
Framework and Infrastructure Tutorial.
https://doi.org/10.1007/11532378_2

[40] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar,
J., Riddle, R., Shpeisman, T., Vasilache, N., & Zinenko, O. (2021,

February 27). MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. https://research.google/pubs/pub49988/

[41] LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. (n.d). https://llvm.org/pubs/2004-01-30-CGO-
LLVM.pdf

[42] optimization. (2011, May 1). https://blog.llvm.org/tags/optimization/

[43] PEP 488 – Elimination of PYO files. (2022, March 9).
https://peps.python.org/pep-0488/

[44] Pramanick, S. (2019, May 2). History of Python.
https://www.geeksforgeeks.org/history-of-python/

[45] Python is becoming the world’s most popular coding language. (2018,
July 26). https://www.economist.com/graphic-
detail/2018/07/26/python-is-becoming-the-worlds-most-popular-
coding-language

[46] Savage, N. (2023, January 1). Revamping Python for an AI World.
https://cacm.acm.org/magazines/2023/12/278143-revamping-python-
for-an-ai-world/fulltext

[47] Savage, N. (2023, November 17). Revamping Python for an AI World.
https://doi.org/10.1145/3624987

[48] Schoenborn, O. (2005, March 1). Resource Management in Python.
https://www.drdobbs.com/web-development/resource-management-in-
python/184405999

[49] Sewe, A., Mezini, M., Sarimbekov, A., Ansaloni, D., Binder, W., Ricci,
N., & Guyer, S. (2012, June 15). new Scala() instance of Java.
https://doi.org/10.1145/2258996.2259010

[50] Simeng, Z., Yizhou, Z., & Raj, V. (2020, August 20). Explore the
Improvement of the Management of China's International Film Festivals
Based on Artificial Intelligence.
https://doi.org/10.1145/3407703.3407716

[51] Smith, D. (2023, November 19). How Mojo Hopes to Revamp Python
for an AI World.
https://developers.slashdot.org/story/23/11/18/2128233/how-mojo-
hopes-to-revamp-python-for-an-ai-
world?utm_source=rss1.0mainlinkanon&utm_medium=feed

[52] The bytecode interpreter. (2023, January 1).
https://devguide.python.org/internals/interpreter/

[53] Wang, S., Huang, Y., & Wang, C. (2020, April 7). A Model of Consumer
Perception and Behavioral Intention for AI Service.
https://doi.org/10.1145/3396743.3396791

[54] Zehra, F., Javed, M., Khan, D., & Pasha, M. (2020, December 21).
Comparative Analysis of C++ and Python in Terms of Memory and
Time. https://doi.org/10.20944/preprints202012.0516.v1

[55] G. Savithri, B. K. Mohanta and M. Kumar Dehury, "A Brief Overview
on Security Challenges and Protocols in Internet of Things Application,"
2022 IEEE International IOT, Electronics and Mechatronics Conference
(IEMTRONICS), Toronto, ON, Canada, 2022, pp. 1-7, doi:
10.1109/IEMTRONICS55184.2022.9795794.

[56] B. K. Mohanta, S. Chedup and M. K. Dehury, "Secure Trust Model
Based on Blockchain for Internet of Things Enable Smart Agriculture,"
2021 19th OITS International Conference on Information Technology
(OCIT), Bhubaneswar, India, 2021, pp. 410-415, doi:
10.1109/OCIT53463.2021.00086.

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1297
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore. Restrictions apply.

