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Abstract — In the field of programming languages, Mojo and 

Python have gained significant popularity and recognition among 

developers. While Mojo, a newly emerging language, and Python, 

a well-established language, both have their own merits and 

features that make them suitable for various programming tasks. 

Recent AI techniques such as transformers in Natural Language 

Processing (NLP), Reinforcement Learning (RL), and Generative 

Adversarial Networks (GANs) have shown remarkable 

advancements. However, these techniques face challenges like 

high computational costs, scalability issues, and integration 

complexity. While Python features user-friendly syntax and 

extensive libraries, its interpreted nature can hinder performance 

for computationally intensive tasks. This research addresses this 

limitation by introducing Mojo, a high-performance language 

specifically designed for AI applications. Mojo leverages 

compilation and advanced optimization techniques to achieve 

significantly faster execution speeds compared to Python. The 

Mojo programming language can address these challenges by 

offering high-performance computation, efficient memory 

management, and seamless integration with AI frameworks. This 

can lead to faster processing times, better scalability, and more 

streamlined development workflows for advanced AI systems. 

The paper presents empirical evidence demonstrating the 

substantial performance gains offered by Mojo. Furthermore, the 

analysis explores several advantages of Mojo beyond raw speed. 

These include static typing, which enhances code reliability and 

maintainability, and built-in support for parallelism, enabling 

efficient utilization of multi-core processors. Additionally, Mojo's 

seamless integration with existing Python codebases allows 

developers to leverage the extensive Python ecosystem while 

enjoying the performance benefits of Mojo. 

 

Keywords — Mojo, Python, Programming Languages, 

Performance, AI Applications, Machine Learning, Static Typing, 

Memory Safety, Multithreading 

I. INTRODUCTION 

Artificial Intelligence (AI) is the simulation of human 

intelligence processes by machines, particularly computer 

systems. It is important in the current world because it 

enhances efficiency, drives innovation, and enables solutions 

to complex problems across various sectors, including 

healthcare, finance, and transportation. As depicted in Fig 1. 

This growth is demonstrated globally, with a surge of interest 

evident across numerous countries [1, 50]. This widespread 

adoption is further illustrated by Fig 2, which depicts a clear 

upward trend in the use of the term “AI” over time [29]. Python, 

with its readily readable syntax and extensive ecosystem of 

libraries like TensorFlow and PyTorch, has become the de 

facto language for implementing AI and machine learning (ML) 

models [45, 56]. However, Python's interpreted nature often 

leads to performance bottlenecks, hindering the efficiency of 

complex AI applications. This is particularly true for 

computationally intensive tasks such as deep learning and 

large-scale data processing [28]. Additionally, Python lacks 

features crucial for robust software development, such as static 

typing and strong memory management [34]. To address these 

limitations, a new language specifically designed for high-

performance AI development has emerged: Mojo [26]. 

Fig 1. Popularity of AI Across Countries 

Fig 2. Search Volume For Term AI Over The Years 
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Developed by Chris Lattner, the creator of the popular 

programming language Swift, Mojo offers a compelling 

alternative to Python for AI and ML projects [33]. Unlike 

Python, The Mojo Programming Language, designed for high-

performance AI and data science applications, can 

revolutionize the AI landscape by enabling faster computation, 

more efficient data handling, and seamless integration with 

existing AI frameworks, thus accelerating AI development and 

deployment. Moreover, Mojo boasts several features that 

enhance the development experience for AI applications. 

Static typing ensures type safety, preventing runtime errors 

often encountered in dynamically typed languages like Python 

[24]. This leads to more robust and maintainable code. 

Additionally, Mojo offers strong memory management, 

mitigating the risk of memory leaks and crashes that can 

plague Python programs [32]. Finally, Mojo supports 

multithreading, enabling developers to leverage multiple cores 

or processors for parallelized execution, further boosting 

performance for computationally intensive tasks [48]. The 

motive and objective laid down by the amalgamation of the 

work is to facilitate and validate the features and plethora of 

the new “ Gen-Z ” Language Mojo in terms of building “AI 

and ML Models Faster” with better efficiency. 

II. LITERATURE REVIEW 

Python and C++, two well-known programming languages, are 

compared in this essay. Operating systems employ C++, a low-

level object-oriented language, in contrast to Python, which is 

a high-level object-oriented language. Memory management 

strategies, program execution speed, execution time, and 

memory used by several algorithms in both languages are all 

analyzed. Data suggests that C++ is faster at execution, but 

because it's easier to use, Python is a better choice for novices. 

The study also examines how much time is spent on each 

language. Although Python interpreters need some time to 

convert human-readable code into bytecode and machine code, 

C++ is a statically typed compiled language. Python uses 

dynamic typing, which quickly resolves type conversion 

problems that arise during runtime. The sorting, searching, 

insertion, and deletion algorithms on an array data structure 

formed the foundation for a comparison between the two 

languages. The results of the investigation showed that in 

terms of memory and performance, Python is inferior to C++. 

Nonetheless, C++ is a better option for bigger projects, while 

Python is a fantastic tool for beginners and those looking to 

code quickly. In conclusion, each of Python and C++ has 

benefits of its own. Python is a better choice for beginners than 

C++ because of its ease of use, readability, portability, and 

scalability. C++ is a difficult language to master [10].  

 

The polyhedral loop nest optimizer for the LLVM project, 

Polly, has suggested user-directed pragmas for loop 

modification. An MC tree search (MCTS) search method is 

built to determine the optimal loop optimization strategy. The 

technique is divided into two stages: first, it goes deep to 

exploit the loop transformations on the various tree levels, and 

then it solves the problem by local search process [2,3,4]. In a 

local solution, a restart mechanism keeps the MCTS from 

becoming blocked. Experimental results manifest that the 

MCTS (Monte-Carlo Tree Search) algorithm finds pragma 

combinations with a speedup of 2.3x over Polly's heuristic 

optimizations. To correctly find high-performing loop 

transformation combinations, an autotuning framework was 

created. This suggested MCTS outperforms 16 PolyBench 

kernels and three ECP proxy apps' heuristic optimization of 

Polly. In addition, we want to include the remaining loop 

transformation that Polly can utilize and reduce the search 

space by removing transformations that are not viable and 

identical configurations [11]. 

 

The studies that have been described so far have focused on 

identifying the most painful and descriptive aspects of 

languages like Java, C, C++, C, Rust, and JavaScript. This 

effort is distinctive enough to compare the new Language 

Mojo's design, features, and performance against Python.  

 

III. PYTHON ARCHITECTURE 

Since the late 1980s, Guido Van Rossum has been developing 

Python, a high-level programming language [44]. It was 

created to take the position of the ABC programming language, 

which was compatible with the Amoeba OS [38]. Version 1.0 

of Python was initially made available in 1994. Versions 2.0 

and 3.0 were then published in 2000 and 2008, respectively. 

The Python interpreter, called CPython, is written in the C 

programming language and works behind the scenes [16]. 

 

 
Fig 3. Python's Interpreter Working Mechanism Architecture 

Architectural Breakdown 

 

The CPython implementation shown in Fig 3, the most widely 

used, employs a multi-stage compiler architecture. Here's a 

breakdown of its key components: 

 

• Tokenizer: The source code is broken down into basic 

components known as tokens in this first step. Tokens 

such as def, if, operators (+, -), identifiers like 

variable names, and delimiters like brackets and 

commas are represented by these tokens [54]. 

 

• Parser: The parser takes the token stream and 

constructs an Abstract Syntax Tree (AST). The AST 

serves as a hierarchical representation of the 

program's structure, capturing the relationships 

between code elements [30]. 

 

• Bytecode Generation: Traversing the AST, this stage 

translates it into bytecode, a low-level instruction set 

specifically designed for the Python Virtual Machine 

Proceedings of 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS 2024)
IEEE Xplore Part Number: CFP24DJ3-ART; ISBN: 979-8-3503-7999-0

979-8-3503-7999-0/24/$31.00 ©2024 IEEE 1292
Authorized licensed use limited to: AMITY University. Downloaded on September 09,2024 at 16:51:47 UTC from IEEE Xplore.  Restrictions apply. 



(PVM). Each bytecode instruction corresponds to an 

operation the PVM can execute [52]. 

 

Java Bytecode Vs Python Bytecode 

Java and Python are programming languages that use a 

bytecode as an intermediate representation for their programs 

[31]. There are several differences between Java bytecode and 

Python bytecode: 

 

Platform Independence: Java bytecode is platform-

independent, allowing it to run seamlessly on various 

platforms as long as a compatible JVM is present. On the other 

hand, Python bytecode lacks inherent platform independence, 

and its execution relies on the Python Virtual Machine (PVM), 

which is not a platform-independent abstraction layer [36]. 

 

Optimization Potential: Java bytecode offers greater 

optimization potential due to its Just-In-Time (JIT) compiler, 

which dynamically translates frequently executed bytecode 

sections into machine code during runtime. However, Python 

bytecode has less extensive optimization opportunities and is 

generally considered faster [49]. 

 

Development Workflow: Java Bytecode involves a two-stage 

compilation process, requiring stricter type checking, while 

Python Bytecode generates bytecode at runtime, offering a 

streamlined development workflow but potentially causing 

errors [27]. 

 

Optimization: Certain Python implementations incorporate 

optimization passes at this stage. These passes may analyze the 

bytecode to identify redundancies or inefficiencies, potentially 

improving the code’s performance [27]. 

 

Bytecode Emission: Finally, the optimized bytecode is written 

to a .pyc file. This file serves as an intermediate representation 

and can be reused for subsequent executions, provided the 

source code hasn’t changed [43]. 

IV. MOJO ARCHITECTURE 

Mojo ( mojo_test.   ) , a multi-paradigm programming 

language, was created by Chris Lattner to bridge the gap 

between the research and production stages of AI development 

in May 2023 [46]. It offers syntax familiarity, unparalleled 

performance, Python interoperability, parallel processing, and 

model extensibility [47]. Mojo borrows heavily from Python's 

syntax, providing a smoother transition from research to 

production. It leverages the MLIR compiler infrastructure, 

allowing for the translation of Mojo code into highly optimized 

machine code. Mojo also allows for Python interoperability, 

enabling developers to leverage existing Python libraries 

within their code. Furthermore, Mojo allows for the 

modification and extension of existing AI models, providing a 

powerful tool for advanced AI development. Mojo uses the 

LLVM compiler infrastructure project for exceptional 

performance but instead uses MLIR (Multi-Level Intermediate 

Representation) as a bridge between Mojo's source code and 

the LLVM toolchain. MLIR offers language independence, 

rich optimization opportunities, and extensibility, allowing for 

efficient machine code tailored to specific hardware and 

domain-specific optimizations relevant to AI applications, 

enabling further performance enhancements. The next section 

discusses LLVM and MLIR models in detail. 

 

LLVM 

 

A key characteristic of LLVM is the LLVM Intermediate 

Representation (IR), a description of the code within the 

compiler. What is called an optimizer in a compiler is designed 

to be big enough to have mid-level analysis and 

transformations. These analyses and transformations will work 

under the optimizer. Along with its class oil, LLVM IR is said 

to provide the most aggressive restructure transformation, 

cross-function and/or interprocedural optimization, full 

program analysis, and runtime optimizations. Bases of the 

virtual instruction set such as addition, subtraction, 

comparison, and branch will perform adding sequentially as in 

low-level RISC processors. LLVM is tightly typed, hides 

architectural details under the hood, and is based on a 

simplified type system. Unlike many others, it has a very 

modular structure. Three isomorphic forms of LLVM IR are 

defined: Instead of the textual format, an in-memory data 

structure that may be examined and edited through 

optimization can be applied. Moreover, the bitcode format, 

which is much smaller and denser, is incorporated for the disc 

storage [6].  

 The on-disk format can be changed from text to binary using 

tools from the LLVM Project. Because it is intended to be both 

expressive enough to provide significant optimizations for 

actual targets and simple enough for a front end to create, an 

intermediate representation of a compiler can serve as the 

optimizer's "perfect world". A front end is used by an LLVM-

based compiler to read, verify, and identify mistakes in input 

code before translating it into LLVM IR. After going through 

analysis and optimization stages to make the code better, this 

IR is fed into a code generator to create native machine code. 

LLVM IR is the sole well-defined interface to the optimizer 

and the source of power and flexibility for the LLVM 

architecture [7]. The three-phase architecture model is shown 

in figure 4. Its success in many applications can be attributed 

in large part to this feature. This feature is absent from the GCC 

compiler, though, because its GIMPLE mid-level 

representation is not self-contained. To create a GCC front 

end, front-end authors must thus be familiar with GIMPLE and 

the tree data structures of GCC. Furthermore, GCC is hard to 

experiment with since it doesn't allow you to dump out 

"everything representing my code" or read and write GIMPLE 

in text form. Instead of being a single command line compiler 

or opaque virtual machine, LLVM is an architecture built as a 

set of libraries. It is a framework that may be applied to specific 

tasks, such as developing a C compiler or refining an optimizer 

within a pipeline for special effects [41]. The optimizer 

receives LLVM IR, processes it for a while, and then outputs 

LLVM IR, which should result in speedier execution. The 

optimizer is set up as a series of discrete optimization runs, 

each of which is executed on the input and allowed to act. 

Expression reassociation, loop invariant code mobility, and the 

inliner are common instances of passes [42]. An indirect 

descendant of the Pass class, each LLVM pass is expressed as 
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a C++ class. A single.cpp file contains the majority of passes, 

and an anonymous namespace defines their subclass of the 

Pass class. Numerous passes are available from the LLVM 

optimizer, and each one is compiled into one or more files that 

are then assembled into a collection of archive libraries (.a files 

on Unix systems). Because of the loose coupling between the 

passes, these libraries offer a variety of analysis and 

transformation capabilities. The implementation may select 

which passes are appropriate for the image processing domain 

as well as the sequence in which they run thanks to LLVM's 

library-based design [40, 55]. This uncomplicated design 

strategy enables LLVM to offer a great deal of functionality 

without penalizing library customers who only wish to do 

basic tasks. To generate the best code feasible for each target, 

the LLVM code generator converts LLVM IR into target-

specific machine code. Instruction selection, register 

allocation, scheduling, code layout optimization, and assembly 

emission are some of the distinct stages that it divides the code 

generation problem into. The target author has the option to 

apply custom passes that are unique to their needs or select 

from these predefined passes. Target authors may develop 

excellent code thanks to this flexibility since it eliminates the 

need to completely create a code generator for their target. 

 

 

 
Fig 4. Comprehensive LLVM's Three-Phase Architecture 

Model 

MLIR 

Building reusable and extendable compiler infrastructure is 

being tackled in a new way with the MLIR project [39]. It 

attempts to alleviate the fragmentation of software, enhance 

compilation for heterogeneous hardware, lower the cost of 

developing domain-specific compilers, and provide 

interoperability amongst current compilers. The 

comprehensive model is shown in figure 5. Target-specific 

operations, polyhedral primitives, dataflow graphs, 

optimizations, loop optimizations, code generation "lowering" 

transformations, and hardware synthesis tools are just a few of 

the needs that MLIR, a hybrid IR, covers in a single 

infrastructure [5]. Despite being a sophisticated representation, 

MLIR does not enable source language writing for end users 

or low-level machine code-generating methods. Current best 

practices, such as creating and maintaining an IR standard, 

creating an IR verifier, and creating modular libraries, are 

encouraged by the MLIR framework. Additional modules, 

including restricting the scope of SSA to minimize use-def 

chains and substituting explicit symbol references for cross-

function references, have been integrated into the design [40]. 

 

 
Fig 5. Comprehensive MLIR's Modular Phase Architecture 

Model as an Extension to the LLVM Model 

 

V. PERFORMANCE ANALYSIS 

As termed by the documentation of Modular and Mojo, which 

states that it supports high-performance speed. To prove 

justification for that statement comparative testing was done. 

The three most famous data structure-based algorithms were 

used for the performance analysis. Namely Linear Search, 

Insertion Sort, and Bubble Sort. Recursion-based algorithms 

were not tested as Python has a fixed maximum recursion 

depth. This means there's a limit of 1000 to how many times a 

function can call itself recursively before an error occurs [23]. 

To avoid reaching the maximum recursion depth in Python, it 

is important to optimize recursive functions and make sure 

they have a base case that terminates the recursion [22]. By 

optimizing recursive functions and ensuring a base case, you 

can prevent the program from reaching the maximum 

recursion depth in Python. Additionally, it is possible to 

customize the recursion depth limit in Python using the sys 

module.  

 

The architectures considered for the task are Google Colab (a), 

Windows 10 (b), and Modular Playground (c) described in 

Table 1. 

 

TABLE 1. TESTING PLATFORM'S ARCHITECTURE 

SPECIFICATIONS 

a 

CPU Model: x86_64 

Operating System: Linux-6.1.58+-x86_64-with-

glibc2.35 

Physical Cores: 1 

Logical Cores: 2 

RAM: 12.67 GB 

Architecture: 64bit 

b 

CPU Model: AMD64 Family 23 Model 113 

Stepping 0, AuthenticAMD 

Operating System: Windows-10-10.0.19045-SP0 

Physical Cores: 6 

Logical Cores: 12 

RAM: 15.93 GB 

Architecture: 64bit 

c 

OS : linux  

CPU : cascadelake  
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Arch : x86_64-unknown-linux-gnu  

Physical Cores : 4  

Logical Cores : 8  

CPU Features : sse4 avx avx2 avx512f avx512_vnni 

 

The information on the Modular Playground has been obtained 

from the official documentation which states “ With 3rd 

Generation Intel Xeon Scalable processors powering them, 

Amazon EC2 C6i instances offer up to 15% better pricing 

performance than C5 instances for a variety of applications. 

With a RAM-to-virtual CPU ratio of 2:1, they support up to 

128 virtual instances per instance, which is an increase of 33% 

when compared to C5 instances. Examples of these instances 

include video encoding, ad serving, high-speed computing, 

distributed analytics, batch processing, and multiplayer 

gaming that require high computing power. Besides being 

ideal for low-latency, high-speed applications, they also 

feature local NVMe-based SSD block-level storage. In terms 

of cost per TB, the C6id instances are 56% cheaper than C5d 

instances and would have up to 138% more storage capacity 

per virtual CPU. The C6in versions provide for two times the 

packet performance of the C5n instances and up to 200 Gbps 

of network capacity. Besides, they can deliver 400K I/O 

operations per second (IOPS) and up to 100 Gbps of Amazon 

Elastic Block Store (EBS) performance which is perfect for 

applications with a huge network demand.”  [21] 

 

The RAM specifications for Amazon EC2 C6i instances, with 

the text provided, about the RAM specifications for Amazon 

EC2 C6i instances:  

 

• C6i instances feature a 2:1 vCPU to Memory ratio, as 

is the case for C5 instances. 

• They may be running up to 128 virtual CPUs, which 

is an increment of 33% in comparison to C5 

instances. 

 

Based on this information, we can deduce that the RAM 

specifications for C6i instances depend on the number of 

vCPUs allocated - Based on this information, we can deduce 

that the RAM specifications for C6i instances depend on the 

number of vCPUs allocated: 

 

• The 2:1 vCPU to M implies that for every two 

vCPUs, there is an M of memory. The calculating 

ratio is the same as that of C5 machines. 

• Upto 128 vCPUs of processing capability is 

supported by C6i instances, the translation is that the 

memory is also up to 64 units (128 vCPU ÷ 2 memory 

units per vCPU = the value of A). 

 

Though the text does not show the exact value of RAM per 

vCPU or instance in GB or TB, the given text shows the 

number of vCPUs or seeds that can use the same resources. It 

is the RAM allocation that will correspond with the instance 

type chosen from among the C6i family and with a specific 

configuration during the instance creation. 

 

OS The performance of Programming languages varies with 

different variations of Operating Systems. Some operating 

systems are more optimized for certain programming 

languages, leading to better performance and efficiency [20].                                  

The snippets of the algos and implementation of the codes of 

MOJO in the playground have been described here as follows. 

 

 

Fig 6. Snippet for Building List in Mojo for Testing 

 

Fig 7. Insertion Sort Algorithm Implementation in Mojo 

 

Fig 8. Bubble Sort Algorithm Implementation in Mojo 

 

Fig 9. Linear Search Algorithm Implementation in Mojo 

As described in the code snippets in figures 6 to 9, the List 

Creation has been done with the data points of 10,0000 points 
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the test analysis has been the creation of random 10,000 data 

points then implementing the algorithm as a whole. 

 

Table 2. Performance Results Comparison of Different 

Algorithms with MOJO v/s Python3 

Algo Colab Windows PlayGround 

Bubble Sort 17.0 mins 10.45 mins 2.2613 secs 

Insertion 

Sort 

7.50 mins 4.49 mins 21.010 secs 

Linear 

Search 

0.0118040 

ms 

0.0150 ms 0.8004 secs 

 

The performance metrics displayed in  Table 2 for each 

algorithm in all the environments give a wide range of 

execution times. Bubble Sort O(n2) [17], one of the basic 

algorithms for sorting, runs more quickly in PlayGround 

compared to Colab and Windows, possibly due to different 

resource allocation and optimization approaches. Besides the 

Insertion Sort O(n2) [18], an elementary sorting technique, 

illustrates that Windows and PlayGround are faster than Colab 

in terms of execution time as well. Compared to this, Linear 

Search O(n) [19], a very simple search algorithm operates very 

fast in Colab and Windows but is a little slower in PlayGround. 

Thus, the variations demonstrate the influence of system 

resources, optimization strategies, and environmental 

configurations on algorithms efficiency pointing out that these 

factors should be taken into consideration when comparing 

algorithms in various contexts. 

 

VI. CONCLUSION 

Finally, the study focused on the programming language 

landscape as a part of AI and machine learning exploration 

with a comparative analysis of Mojo and Python. AI 

development has adopted Python as a staple, due to its clear 

and high-level syntax as well as a wide range of libraries; 

however, some performance limitations, if applied to difficult 

calculating tasks, are evident. The characteristics of Mojo, 

which is designed for AI applications and involves features 

like compilation, static typing, memory safety, and built-in 

support for parallelism, have proven to be limitless. The study 

underlines the fundamental divergencies between Python and 

C++ concerning the storage taking in mind and the speed of 

work as well as highlighting the ease of use of Python for 

beginners and C++ for larger projects. It also touches on the 

architecture of Python which involves a multi-stage compiler 

and bytecode generation. In comparison, Mojo has an 

architecture that communicates with the MLIR compiler 

infrastructure for compiled machine code. The performance 

analysis piece tests the performance of algorithms against 

different platform environments, illustrating the implications 

that system resources, optimization strategies, and 

environment configurations have on the efficiency of a given 

algorithm. The outcomes emphasize the need for such areas to 

be factored in when selecting programming languages for 

particular projects. Overall, the research provides its context to 

the ongoing discussion of the listing of programming 

languages for AI development, which underlines their benefits 

and drawbacks and discovers Mojo as a groundbreaking 

supporter of performance in terms of fluency and compatibility 

with the existing Python codebase. 
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